鹏仔先生-趣站-一个有趣的网站!
鹏仔先生

鹏仔先生

当前位置:网站首页 > 文字大全 > 正文

什么为基因工程的发展起了推动作用?

作者:百变鹏仔日期:2023-08-04 14:16:10浏览:14分类:文字大全

什么为基因工程的发展起了推动作用?

限制酶的发现给基因工程的发展起了巨大的推动作用。限制酶是基因工程中不可缺少的工具酶,有人把它比喻为“基因工程的手术刀”。限制酶切点专一,它作用于DNA分子,产生特异DNA的片段。用DNA连接酶,可将这种DNA片段与用同种限制酶处理得到的另一种DNA片段连接起来,而组成杂合DNA分子。

几乎所有种类的原核生物都能产生限制酶。根据结构和功能特性,可将限制酶分为Ⅰ、Ⅱ、Ⅲ。Ⅰ型和Ⅲ型限制酶的切点不固定,不能产生可以利用的DNA片断,因此基因工程中所用的限制酶都是Ⅱ型限制酶。

由于限制酶的大量发现,需要有一个统一的命名法,以免造成混乱。现行Ⅱ型限制酶命名法要点是:①限制酶的名称由三个字母组成。第一个字母采用细菌属名的第一个大写字母,第二和第三个字母采用细菌种名的前两个字母。如大肠杆菌(Escherichiacoli)用Eco表示,流感嗜血菌(Hacmophilusinflucnzac)用Hin表示。②第四个字母是表示菌株的类型,如Ecor中的R代表大肠杆菌R株。③如果一个菌株中有几种限制酶,则在代表菌株的字母后用罗马数字表示。如流感嗜血d株有几种限制酶,则分别表示为Hindl、Hindll、Hindlll等。④当同属细菌的不同细菌名前两个字母完全相同时,一般取名词头后的第一个字母来代替酶名字中的第三字母。例如Hinfl表示是从流感嗜血杆菌的f菌株中发现和提纯的第一种限制酶。迄今发现的限制酶有400种,基因工程中常用的EcoRI、BamHll、Hindlll、Hinclv、Pstl、Pvull等十分钟。

Ⅱ型限制酶是一种位点特异性酶,能够识别双链DNA分子中的特异序列,并在特定部位上水解双链DNA中每一条链上的磷酸二酯键,从而造成双链缺口,切断DNA分子。限制酶的识别序列一般为4~8个核苷酸,这此序列大多呈回文结构,也就是说,序列正读和反读是一样的。例如,EcoRⅠ识别6个核苷酸序列,在特定的G-A之间切割DNA分子:

EcoRⅠ酶切

5'…G?A-A-T-T-C…3'5'…GA-A-T-T-C…3'?3'…C-T-T-A-A?G…5'3'…C-T-T-A-AG…5'(3'粘性末端)

EcoRⅠ识别6个核苷酸的序列,在特定的A-A之间切割DNA分子:

EcoRⅠ酸切

5'…A?A-G-A-C-T-T'…3'5'…AA-G-C-T-T…3'?3'…T-T-C-T-G-A?A…5'3'…C-T-T-C-AG…5'(3'粘性末端)

由于大多数Ⅱ型限制酶在双链核苷酸回文序列中相应的部位上进行切割,因此,经限制酶切割的双链DNA形成所谓的粘性末端,也就是在DNA末端由几个碱基组成的能与具有互补末端的DNA片段连接的部分,多数限制酶在作用后产生具有5′末端突出或3′突出的粘性末端。例如EcoRⅠ和BamHⅠ在切割双链DNA形成3′粘性末端,PstⅠ切割双连DNAⅠ形成5′粘性末端。

粘性末端能与另一个相同的粘性末端相连接,任何两个具有相同识别位点的DNA分子经限制酶切割点后能够重新连接成新的重组DNA分子。在进行DNA重组时,应用限制酶同时切割目的基因和载体DNA,使之产生相对的粘性末端,然后再将二者连接成重组DNA分子。

酶切产生的平端也可用连接酶连接。平端之间的连接效率比粘性末端之间的连接效率要低,但因平端连接具有普遍适应性,所以极其有用。例如限制性内切酶HaeⅢ产生的平端,不仅能与HaeⅢ切出的平端或其他内切酶切出的平端连接,而且能与补平后的3′突出端相连接。平端连接还可应用于合成的多克隆位点(DNA多接头)连接到DNA的末端。

与其他酶学反应一样,应用各种限制性内切酶切割DNA时需要适宜的反应条件,包括温度、pH值和离子强度等等。限制酶的活性单位是指某种限制酶在最适合反应条件下,1微克DNA于1小时完全酶切的酶量。

在商品目录中或某些论著中,有些酶被标记上星号(*)。如EcoRⅠ*,意思是说在反应体系变化时,酶的性能甚至酶切位点可能会改变。例如离子强度降低,pH值升高,或酶浓度过高,WcoRⅠ除切割GAATTC,还非随机地切割AATT序列,这给操作使用造成困难。这就是所谓的“星号活性”(staractivity)。发生星号活性的EcoRⅠ,还有HindⅢ、HbaⅠ、BsuⅠ、XBbaⅠ、SalⅠ、Pst、BamHⅠ和SstⅠ等。关于星号活性的发生机制尚不清楚。维持反应体系适当的离子强度、较低的温度或酶浓度,尽可能缩断反应时间或DNA样品的重新处理等措施,常常可使星号活性得以克服。

案例

使用双酶切的方式将一段基因序列插入pDsRed2-N1质粒中,使其能够与DsRED蛋白进行融合表达。

1. 序列导入

pDsRed2-N1质粒可以直接在SnapGene的序列库中找到,导入方式在前面的文章中已经介绍,这里不再赘述。从图谱中选择多克隆位点区域MCS,点击,并转到序列页面:

同时,新建DNA序列,将目的基因的序列粘贴进去,用于后续的酶切位点分析。

敲黑板!!!

2.?酶切位点分析

双酶切连接的酶需要满足以下要求:

一、酶切位点需要存在于MCS中,但同时不能存在于目的基因序列中。

二、两个酶切位点之间至少要有几个碱基间隔,不能紧邻或重叠。

三、最好选择成熟的内切酶。

四、结合实验室酶库,最好保证内切酶能在同一最佳缓冲液进行反应

五、双酶切后末端不会发生自连

按照以上原则,我们先看基因中的常见酶切位点:

然后在MCS中排除这些酶切位点:

之后在剩下的酶切位点中,选择常用的即可,因为HindIII、EcoRI两个酶切位点靠的太近,没有选择这两个的组合,以免造成双酶切的效率下降。因此,最终选择的是EcoRI+KpnI的酶切组合。同时,发现EcoRI酶和KpnI酶的最佳NEB反应缓冲液不一样,查看EcoRI酶和KpnI酶的TAKARA双酶切体系,推荐使用TAKARA的M缓冲液。

3. 调整融合表达的阅读框

因为目的基因需要融合下游的荧光蛋白进行示踪,所以调整阅读框的通顺性是非常重要的,首先将目的基因中的终止密码子去除,然后将载体上EcoRI+KpnI之间的序列替换为去除终止密码子之后的目的基因的序列:

观察目的基因向下游表达至DsRed2中的氨基酸序列(HGL),发现与DsRed2原始序列(MAS)不同,即发生了移码,完整的阅读框遭到了破坏。因此,我们需要在目的基因下游与KpnI之间添加碱基恢复其阅读框的正确。

从上图中可以看出,当添加了两个碱基之后,之前的两个不同的氨基酸序列合二为一,变为正确的序列,即目的Gene可以跟下游的DsRed2基因进行正确的融合表达了。(如果您的蛋白序列3端不是核心功能区,去掉一个碱基同样可以修复阅读框)

鹏仔 微信 15129739599

百科狗 baikegou.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

  • 上一篇:已经是第一篇了
  • 下一篇:已经是最后一篇了
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)