鹏仔先生-趣站-一个有趣的网站!
鹏仔先生

鹏仔先生

当前位置:网站首页 > 教育知识 > 正文

2016年诺贝尔奖部分奖项陆续公布 中国处于怎样水平

作者:百变鹏仔日期:2023-07-10 07:20:37浏览:10分类:教育知识

2016年诺贝尔奖部分奖项陆续公布 中国处于怎样水平

过去几天,2016年诺贝尔奖的部分奖项陆续公布,引来关注无数。

诺贝尔生理学或医学奖授予日本科学家大隅良典,以表彰他在细胞自噬机制研究中取得的成就。诺贝尔物理学奖授予戴维·索利斯、邓肯·霍尔丹和迈克尔·科斯特利茨,以表彰他们在物质的拓扑相变和拓扑相方面的理论发现。诺贝尔化学奖授予让—皮埃尔·索瓦日、弗雷泽·斯托达特、伯纳德·费林加,以表彰他们在分子机器设计与合成领域的贡献。

大奖为何花落这些科学家?他们的研究成果意义如何?中国在这些领域的研究又处于怎样的位置与水平?

细胞“吃掉自己”实现自救

虽然在生命科学领域相对落后,但在细胞自噬这个具体方向上,我国科学家处于领先地位

“自噬”字面意思是“将自己吃掉”,实则是一种细胞自身成分降解和循环的基本过程。通俗地说,细胞可以通过降解自身的非必需成分来提供营养和能量,也可以降解一些毒性成分以阻止细胞损伤和凋亡。美国南加州大学医学院分子微生物学和免疫学专家梁承宇博士将其比喻为一种细胞的“自我救赎”。

梁承宇说,从广义上说,细胞自噬的运转机制更像是细胞内庞大运输机制的一部分。自噬机制就好比是细胞自身净化和实现自动环保的一条运输线。它将细胞内代谢废物以及一些过期无用或有损伤的细胞零件,装到其独特的运输工具——自噬小体中,然后沿着特定路线,送到“垃圾加工厂”——溶酶体中进行回收和废物再利用。

自噬机制还能在细胞能量匮乏时开启紧急运输通道,以供应能量。因此,自噬机制是细胞内庞大运输网络体系中非常重要的一部分。“它对于维系细胞基本的生存需求与平衡是不可或缺的,”梁承宇说。

“自噬”概念于上世纪60年代提出,当时研究人员就发现了细胞这种降解自身成分的现象,但有关机制一直不为人知。

上世纪90年代初,日本科学家大隅良典通过利用常见的酵母进行一系列实验后,发现了对细胞自噬机制具有决定性意义的基因。基于这一研究成果,他随后又阐明了自噬机制的原理,并证明人类细胞也拥有相同的自噬机制。

评选委员会在当天发布的新闻公报中指出,大隅良典的研究成果有助于人类更好地了解细胞如何实现自身的循环利用。在适应饥饿或应对感染等许多生理进程中,细胞自噬机制都有重要意义,大隅良典的发现为理解这些意义开辟了道路。此外,细胞自噬基因的突变会引发疾病,因此干扰自噬过程可以用于癌症和神经系统疾病等的治疗。

作为国内研究多细胞生物中自噬作用机理和调控机制的专家,中科院生物物理所研究员张宏与大隅良典在学术上有过深入交流。在张宏看来,虽然我国在生命科学领域仍处于相对落后的地位,但在细胞自噬这个具体方向上,我国科学家处于领先地位。“细胞自噬是目前国际上生命科学领域的研究热点,国内有很多团队投身其中,中科院动物研究所的陈佺教授团队、清华大学陈晔光教授、北京大学医学部朱卫国教授团队等都有不少原创成果。”张宏说。

清华大学教授俞立2008年回国任教,对于国内近些年在生命科学领域的进步深有感触。“如果将细胞自噬研究比作一座大楼,那么中国科学家已经为这座大楼增添了新的楼层。”

“细胞自噬的研究才刚刚开始”,张宏说,中国科学家有能力在这个领域做出更大贡献。

将拓扑概念引入物理学研究

在理论预言的基础上,我国科学家将TaAs中的外尔费米子行为首次展现到世人面前

评选委员会表示,戴维·索利斯、邓肯·霍尔丹和迈克尔·科斯特利茨将拓扑概念应用于物理研究,是他们取得成就的关键。

对很多人来说,“拓扑相变和拓扑相”属于让人望而生畏的深奥理论。

拓扑本身是一个数学概念,描述的是几何体在连续弹性形变(不撕破,不截断)下能够保持不变的性质。“比如,一块面团无论怎么揉搓,它的外表面上的孔洞数是0。而如果撕破它,重新粘连,就可以做成面包圈,面包圈的外表面就形成了1个孔洞。这个孔洞的数目就是面团或面包圈在连续弹性形变下保持不变的量,是区分这两个几何体的拓扑不变量,即拓扑数。” 中科院物理所研究员翁红明说。

不同的物质形态称之为物质的不同“相”或物态。相变,也就是物质“变脸”的过程,即从一种相变换到另一种相的过程。比如水随着温度变化而在固、液、气三态之间的转化实际上就是相变的过程。相变过程通常伴随物质性质、性能的改变。物质的“拓扑性质”发生了变化,称之为“拓扑相变”。拓扑相变伴随的是拓扑数的变化。

但是,如果物质变得极薄,物质的相还在吗?评选委员会介绍说,平面中的物理现象和我们认知的周围世界是截然不同的,甚至分布非常稀疏的物质中也包含了数百万个原子,每个原子的行为都可以用量子物理学来解释,而很多原子结合的时候却显示完全不同的属性。3位获奖者的研究成果正是揭示了拓扑性质在量子物态和量子相变中的决定性影响。

科斯特利茨和索利斯的研究集中在一个平面世界中的“怪现象”,相比于通常描述的三维世界,他们发现极薄层的表面或内部可以被认为是二维的,那里一种被称为“超流体到正常流体的相变”,主要决定因素与人们以往的认识完全不同。霍尔丹发现可以利用拓扑概念来解释一些材料中存在的小磁铁链的特性。他发现,原子磁性的不同使这些链条呈现出完全不同的属性。霍尔丹还在量子霍尔效应方面做了许多开创性工作。

正如瑞典皇家科学院所说,今年的获奖研究成果开启了一个未知世界的领域。得益于这3位获奖者开创性的研究,科学家们现在可以继续探索物质的新相变。研究人员认为,拓扑材料将在未来的电子和超导体以及量子计算机研发中得到应用。

在拓扑研究领域,我国科学家也有不少值得称道的工作,一些研究还处于国际拓扑研究领域的前沿。

翁红明介绍,早在2009年,中科院物理研究所方忠、戴希等与华人科学家张首晟合作,理论预言了目前最为广泛研究的拓扑绝缘体材料Bi2Se3家族。2014年底,中科院物理所方忠、戴希、翁红明研究团队,理论预言TaAs晶体是非磁性的外尔半金属。在他们的推动下,2015年,中科院物理所的陈根富小组制备出高质量样品,丁洪、钱天小组使用上海光源“梦之线”观测到了TaAs中的外尔费米子行为,这是该类特殊的电子第一次展现在世人面前。外尔半金属是拓扑半金属研究的一个重要方向。该研究成果被英国物理学会主办的《物理世界》评为“2015年度十大突破之一”,同时也被美国物理学会的《物理》评为“2015年度八大亮点工作”之一。

分子机器为化学开启新世界

起步虽晚,但近10年来,我国在新的分子机器的构建、原理设计以及应用方面都取得了进展

世界上存在小到只有千分之一头发丝粗细的机器吗?答案就是刚刚助力3位科学家摘得2016年诺贝尔化学奖的分子机器。

分子机器是指在分子层面的微观尺度上设计开发出来的机器,在向其提供能量时可移动执行特定任务,是纳米研究领域的重点。评选委员会表示,3位科学家发明了“世界上最小的机器”,将化学发展推向了一个新的维度。

所有的化学系统都力图达到平衡态,可以减少能量消耗,但是这也会形成“僵局”。就像人的生命一样,人体内的分子可以从食物中获取能量,进而推动人体的分子系统远离平衡态,向更高水平的能量状态发展,这样人体才有可能利用这些能量推动肌体正常工作,维持生命。而一旦人体处于化学平衡态,人就会死亡。

3位科学家的成就能够获得诺奖青睐,就在于他们的研究促使分子系统摆脱了平衡态,并能受控执行特定任务,为化学的发展开启了一个新世界。

据介绍,3位获奖者完成了分子机器设计与合成的“三步走”:第一步,索瓦日成功合成了一种名为“索烃”的两个互扣的环状分子,而且这两个分子能够相对移动;第二步,斯托达特合成了“轮烷”,即将一个环状分子套在一个哑铃状的线形分子轴上,且环状分子能围绕这个轴上下移动,并成功实现了可以上升高度达0.7纳米的“分子电梯”和可以弯折黄金薄片的“分子肌肉”;第三步,费林加设计出了在构造上能向一个特定方向旋转的分子马达,这个马达可以让1个28微米长、比马达本身大1万倍的玻璃缸旋转起来。分子机器动起来了。

近年来,3位诺奖得主的成果已经成为全世界科研人员开发分子机器的“工具箱”,开创了分子机器的发展道路。目前已有科学家在轮烷的基础上建造出一个可以抓取并连接氨基酸的分子机器人;还有研究人员将分子马达和长聚合物相连,形成复杂的网络,将光能储存在分子中,有望开发出新型电池及光控传感器。

评选委员会表示,分子机器未来很有可能将用于开发新材料、新型传感器和能量存储系统等,为人类的未来提供了无限可能。

复旦大学化学系教授黎占亭表示,我国分子机器领域起步虽然较晚,但发展迅速。尤其是近10年来,国内在新的分子机器的构建、原理设计以及应用方面都取得了进展,无论是学术研究还是分子机器的应用探索上,都有不少成果,既在国内受到认可,也引起国际关注。例如,华东理工大学田禾院士团队的“有机荧光功能材料”研究,创新合成了新型的可控分子器件和高性能有机光电功能材料,获得2007年度国家自然科学奖二等奖。

黎占亭觉得,未来,中国在分子机器研究领域将产出更多创新性成果,中国在分子机器领域将更有作为。

1、引言

超分子聚合物是高分子科学与超分子科学交叉的研究方向。与基于共价键的聚合物不同的是,超分子聚合物为单体间通过非共价键作用连接的链状聚集体,并能在溶液和体相中表现出聚合物的性质。其非共价键赋予了超分子聚合物一些特殊的性能,包括:热响应性、光/电/化学物质响应性、自修复和自适应性能等,还可通过对非共价键的操作进行聚合物的可逆调控。这些新颖而独特的性质使得超分子聚合物在智能功能材料、环境友好材料、 生物医用材料等领域具有广阔的应用前景,引起了研究人员对超分子聚合物研究的广泛关注。

2、 背景

1990年Lehn报道了基于三重氢键作用构筑的具有液晶性质的超分子聚合物,该作者因其杰出的研究工作获得了诺贝尔奖。但由于三重氢键的作用不够强,因此在溶液中很难得到高分子量的超分子聚合物。此后,荷兰Meijer等发展了结合常数达到107 (mol/L)?1的自配对四重氢键体系,实现了有机溶剂中高分子量超分子聚合物的构筑,并展现了超分子聚合物在可降解和可逆材料等方面不可替代的优越性。

3、超分子聚合的驱动力

超分子聚合的驱动力来自于不同非共价键的作用,包括:多重氢键作用、金属配位健、π-π作用、主客体相互作用等。

图1 超分子聚合物的不同驱动力

其中,主客体相互作用是最常用来驱动溶液中超分子聚合的作用力之一。常用的大环主体化合物有冠醚、环糊精、杯芳烃、柱芳烃、葫芦脲等。

为了得到高分子量的超分子聚合物,需要增强超分子聚合的驱动力,清华大学的张希等人利用葫芦脲介导的主客体复合的焓驱动的过程代替了与水溶液中经典的熵驱动过程,从而提高了反应的结合常数,并通过合理的分子设计,在低浓度的溶液中成功制备了高分子量的超分子聚合物。中国科学技术大学汪峰等人利用镊形主体分子与稠环芳烃之间的多重相互作用的协同效应能,在溶液中构筑了响应性的超分子聚合物,这为驱动超分子聚合提供了新的方法。

超分子聚合物不仅可以由某一种非共价作用力驱动形成,还可以由几种作用力共同驱动形成,这几种作用力互不干扰,从而产生“正交”的作用。多种作用力共同驱动超分子聚合物的形成会为超分子聚合物带来多种性质,也为多级自组装制备高级有序的超分子组装结构提供了便利条件。

4、超分子聚合物的拓扑结构

超分子聚合物按拓扑结构分类可分为线形、支化、交联三大类。其中线形超分子聚合物是最常见的拓扑结构;支化超分子聚合物可细分为星形、侧链、超支化等结构;交联超分子聚合物按规整程度可分为无规交联和超分子有机框架。

图2 超分子聚合物的拓扑结构

(1)线形超分子聚合物又称主链型超分子聚合物,由非共价键作用连接双官能度的单体构成聚合物主链。

(2)支化超分子聚合物往往具有多个支化点,其支化位点可以通过非共价键作用构建,也可以通过共价合成构筑。其合成方法包括“先核后臂”和“先壁后核”, 通过改变加入聚合单体的比例,可以对星形超分子聚合物的分子量进行有效的调控。

(3)侧链型超分子聚合物的构筑通常是在共价聚合物链的侧基上通过非共价键作用引入多条侧链来实现的,也可称为接枝型超分子聚合物。值得注意的是,侧链超分子聚合物的支化点位于共价聚合物链的主链上,因此支化点的数量和密度可以通过改变共价聚合的条件来进行调控。更为重要的是,通过可逆的非共价键作用,可以方便地将不同结构、不同性质的侧链接枝到主链上。因此,基于侧链超分子聚合物来实现多种性质与功能的集成,通过调控不同种侧链的比例来实现集成后性质和功能的优化,是一种实现超分子聚合物功能化的有效策略。

(4)交联超分子聚合物可以通过混合多官能度的单体来制备。通过在多官能度的单体分子中引入刚性或柔性的连接基,可以得到2种类型的交联超分子聚合物。若单体分子中的连接基具有一定的柔性,一般会相互交联得到无规的网络状结构。若单体分子的刚性较强且具有特定的取向,则相互交联后会得到规整的框架结构,一般称之为超分子有机框架。除了利用官能度大于3的单体自组装得到无规交联的超分子聚合物网络,通过在线性超分子聚合物中加入交联剂也可实现相同的效果。

(5)超分子有机框架(SOF)是复旦大学黎占亭和中国科学院上海有机化学研究所赵新等于2013年发展的一种具有周期性孔状结构的二维或三维超分子聚合物。SOF通常由非常刚性的单体分子通过自组装得到,因为柔性的分子在组装时往往会产生缺陷和交联,无法得到规整的框架结构。根据刚性单体中取代基之间的角度和取向不同,可以可控地制备二维或三维的SOF结构。随着超分子聚合物研究的不断发展,会不断产生更多的拓扑结构。将不同拓扑结构的聚合物通过非共价键作用连接,还可以构筑结构变化更加丰富的超分子共聚物。

5、可控超分子聚合

尽管超分子聚合物研究取得了长足的进步,但如何实现可控地制备超分子聚合物仍然是个挑战。这是因为非共价键作用的动态可逆特性,溶液中的超分子聚合是自发组装的过程,具有浓度依赖性,因此制备超分子聚合物并不像共价聚合物一样容易得到可控的分子量及分子量分布。实现超分子聚合的可控,制备具有确定结构和分子量的超分子聚合物,对于研究超分子聚合物的结构与性能关系、设计合成特定功能的超分子聚合物具有重要的意义。

可以通过调节单体的结构、取向和刚柔性等,对超分子聚合物的聚合度和性质进行调控。基于这一思路,研究人员将可以发生顺反异构化的光敏基团引入超分子聚合物单体的分子设计中,通过光辐照引起单体的结构变化来实现对超分子聚合的调控。单体的结构、取向和刚柔性不仅可以通过光化学来调控,张希等还提出了一种基于自分类识别的可控超分子聚合新方法来进行调控。

图3 通过自分类促进和控制的可控超分子聚合

超分子聚合物的制备通常是由双官能度的单体在溶液中通过非共价键作用的连接而自发地形成,这种方法可称作是共价单体的超分子聚合。张希等反其道而行之,提出了超分子单体的共价聚合以制备超分子聚合物的新方法。通过常规的共价聚合方法制备超分子聚合物,这一新方法可以将传统的点击聚合、烯烃复分解聚合等高效的聚合方法引入到超分子聚合物的制备中,将不易调控的非共价聚合转化为可控的共价聚合。通过这一方法,有望实现超分子聚合物的可控制备。研究人员还希望超分子聚合能够研发出像普通的共价键聚合一样具有普适意义的活性超分子聚合新方法,以实现对超分子聚合物的结构、分子量和分子量分布的精确调控。

6、功能超分子聚合物

图4 功能超分子聚合物

超分子聚合物由于其动态可逆性,具有传统共价聚合物不具备的一些性质,因此可在某些领域大放异彩,从而体现超分子聚合物的价值。超分子聚合物所具有的刺激响应性(包括热、光、电、化学等响应)可对超分子聚合物的性质进行良好的调控。如将多种刺激敏感的单元引入超分子聚合物的设计中,便可以赋予超分子聚合物对多种刺激的响应性,从而大大丰富超分子聚合物的性质和功能。

研究人员利用超分子聚合物代替金属有机聚合物作为非均相催化剂,解决了有机金属化合物合成繁琐、不易分离和提纯等缺点。可以预见,非共价合成将作为有机合成的重要补充,发挥重要的作用。

超分子聚合物凝胶是超分子聚合物链之间通过物理缠结或化学交联等作用形成的包裹了大量溶剂的三维网络结构,往往体现出优异的自修复性质。相对于共价聚合物缓慢且低效率的自修复过程,超分子聚合物凝胶在发生破损后,其断面上带有丰富的非共价连接基元,通过断面之间非共价连接基元的重新组装和结合,可以实现快速、高效的自修复。另外超分子聚合物可以解决共价聚合物在生物成像、药物载体领域所面临的两个难题。其一,超分子聚合物完全由小分子构筑基元组装而成,其组分是确定的小分子;其二,超分子聚合物的动态可逆性使其可在生物环境内自发地降解为小分子。因此,超分子聚合物有望在生物医用领域发挥巨大的作用。

7、总结与展望

在超分子化学研究方面,能否发展普适的构筑基元驱动超分子聚合,仍然是亟待解决的问题;超分子物理研究方面,需要对超分子聚合的热力学和动力学进行研究,以指导发展可控超分子聚合物的方法。并对超分子聚合物的理论模拟和流变学以及高分子物理的相关理论是否符合超分子聚合物进行进一步的探索。

在超分子聚合物的表征方面,研究人员已经发展了非对称流场场流分析方法(As4F)和超速离心等方法来表征超分子聚合物的分子量,这些方法的表征精度有了一定程度上的提高,却仍然无法像使用GPC来表征共价聚合物一样能够快速地给出分子量和分子量分布的信息。因此,如何针对超分子聚合物的特点发展新的表征方法,从不同的角度提供超分子聚合物的结构信息,对于超分子聚合物的发展至关重要。

在未来,超分子聚合物材料应当和共价聚合物材料形成互补,实现共价聚合物材料无法实现的功能和用途,只有这样,才能既体现超分子聚合物研究的科学价值,又能体现其社会价值。

鹏仔 微信 15129739599

百科狗 baikegou.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

  • 上一篇:已经是第一篇了
  • 下一篇:已经是最后一篇了
内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)